Pregnancy is a critical time for the health of the mother and the fetus, with important potential risks for both. Tools for antenatal diagnosis and pregnancy monitoring can support prevention and management of potential risks and complications. In particular, the perinatal period, spanning from the third trimester of pregnancy up to one month after birth, is the most critical for the baby. For this reason, in the last decades, biomedical engineering supported and fostered the scientific research towards the identification of new models, parameters, algorithms, and tools that can improve the quality of fetal monitoring, predict the outcomes and allow physicians to intervene in an appropriate manner to ensure a healthy future for the baby. This book follows the First International Summer School on Technologies and Signal Processing in Perinatal Medicine and reflects some of its most important master lectures. It represents a valuable guide for students and young researchers approaching this topic for the first time, as well as experienced researchers and practitioners looking for a clear representation of the themes and techniques presented by recognized experts in the field. Presents current and innovative technologies for fetal and neonatal monitoring Emphasis on both technology/signal processing and clinical aspects Offers a clear didactic approach to the subject matter
Due to parallel advances in signal processing and computer hardware in the last 15 years, quantitative ultrasound techniques have reached maturity, allowing for the construction of quantitative maps or images of soft tissues. This book will focus on 5 modern research topics related to quantitative ultrasound of soft tissues: - Spectral-based methods for tissue characterization, tissue typing, cancer detection, etc.; - Envelope statistics analysis as a means of quantifying and imaging tissue properties; - Ultrasound elastography for quantifying elastic properties of tissues (several clinical ultrasound scanners now display elastography images); - Scanning acoustic microscopy for forming images of mechanical properties of soft tissues with micron resolution (desktop size scanners are now available); and - Ultrasound computer tomography for breast cancer imaging (new ultrasound tomography systems have been developed and are currently under evaluation clinically).
This book constitutes the refereed proceedings of the 5th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2009, held in Nice, France in June 2009. The 54 revised full papers presented were carefully reviewed and selected from numerous submissions. The contributions cover topics such as cardiac imaging and electrophysiology, cardiac architecture imaging and analysis, cardiac imaging, cardiac electrophysiology, cardiac motion estimation, cardiac mechanics, cardiac image analysis, cardiac biophysical simulation, cardiac research platforms, and cardiac anatomical and functional imaging.
Designed to support global development of nursing science, the Routledge International Handbook of Advanced Quantitative Methods in Nursing Research provides a new, comprehensive, and authoritative treatment of advanced quantitative methods for nursing research. Incorporating past approaches that have served as the foundation for the science, this cutting edge book also explores emerging approaches that will shape its future. Divided into six parts, it covers: -the domain of nursing science - measurement—classical test theory, IRT, clinimetrics, behavioral observation, biophysical measurement -models for prediction and explanation—SEM, general growth mixture models, hierarchical models, analysis of dynamic systems -intervention research—theory-based interventions, causality, third variables, pilot studies,
quasi-experimental design, joint models for longitudinal data and time to event—e-science—DIKW paradigm, big data, data mining, omics, FMRI -special topics—comparative effectiveness and meta-analysis, patient safety, economics research in nursing, mixed methods, global research dissemination Written by a distinguished group of international nursing scientists, scientists from related fields, and methodologists, the Handbook is the ideal reference for everyone involved in nursing science, whether they are graduate students, academics, editors and reviewers, or clinical investigators.

Ultrasonic transducers are key components in sensors for distance, flow and level measurement as well as in power, biomedical and other applications of ultrasound. Ultrasonic transducers reviews recent research in the design and application of this important technology. Part one provides an overview of materials and design of ultrasonic transducers. Piezoelectricity and basic configurations are explored in depth, along with electromagnetic acoustic transducers, and the use of ceramics, thin film and single crystals in ultrasonic transducers. Part two goes on to investigate modelling and characterisation, with performance modelling, electrical evaluation, laser Doppler vibrometry and optical visualisation all considered in detail. Applications of ultrasonic transducers are the focus of part three, beginning with a review of surface acoustic wave devices and air-borne ultrasound transducers, and going on to consider ultrasonic transducers for use at high temperature and in flaw detection systems, power, biomedical and micro-scale ultrasonics, therapeutic ultrasound devices, piezoelectric and fibre optic hydrophones, and ultrasonic motors are also described. With its distinguished editor and expert team of international contributors,Ultrasonic transducers is an authoritative review of key developments for engineers and materials scientists involved in this area of technology as well as in its applications in sectors as diverse as electronics, wireless communication and medical diagnostics. Reviews recent research in the design and application of ultrasonic transducers Provides an overview of the materials and design of ultrasonic transducers, with an in-depth exploration of piezoelectricity and basic configurations Investigates modelling and characterisation, applications of ultrasonic transducers, and ultrasonic transducers for use at high temperature and in flaw detection systems

Adopting a multidisciplinary approach with input from physicists, researchers and medical professionals, this is the first book to introduce many different technical approaches for the visualization of microcirculation, including laser Doppler and laser speckle, optical coherence tomography and photo-acoustic tomography. It covers everything from basic research to medical applications, providing the technical details while also outlining the respective strengths and weaknesses of each imaging technique. Edited by an international team of top experts, this is the ultimate handbook for every clinician and researcher relying on microcirculation imaging.

This thesis describes the design and fabrication of ultrasound probes for pedicle screw guidance. The author details the fabrication of a 2MHz radial array for a pedicle screw insertion eliminating the need for manual rotation of the transducer. He includes radial images obtained from successive groupings of array elements in various fluids. He also examines the manner in which it can affect ultrasound propagation. This text provides a comprehensive review of ultrasound in thyroid and parathyroid diseases. These topics are presented from a vantage point of complex decision-making encountered in real clinical scenarios. The sections are organized according to a logical structure covering benign and malignant thyroid conditions, parathyroid disease, and ultrasound technology, ultrasound-guided interventions, and innovations. The style of the chapters provide practical, actionable information that is richly illustrated with figures and links to video cine-clips. The chapter topics aim to show how different specialists uniquely apply ultrasound in given clinical scenarios. The text illustrates the optimal incorporation of current practice guidelines, as this remains varied and inconsistent among clinicians. The content is written by invited experts who perform ultrasound in their daily clinical practices and participate in teaching ultrasound nationally and internationally. It conveys the
most up-to-date scientific and clinical information in an interactive and visual format. Advanced Thyroid and Parathyroid Ultrasound fills a gap in currently available resources by serving as a single resource unifying information relevant to multiple specialists interested in advanced thyroid and parathyroid ultrasound. It provides a practical, concise yet comprehensive summary of the current status of the field that will help guide patient management.

This book provides the most comprehensive and consistent survey of the field of IC design for Biological Sensing and Processing. The authors describe a multitude of applications that require custom CMOS IC design and highlight the techniques in analog and mixed-signal circuit design that potentially can cross boundaries and benefit the very wide community of bio-medical engineers.

This third edition provides a concise and generously illustrated survey of the complete field of medical imaging and image computing, explaining the mathematical and physical principles and giving the reader a clear understanding of how images are obtained and interpreted. Medical imaging and image computing are rapidly evolving fields, and this edition has been updated with the latest developments in the field, as well as new images and animations. An introductory chapter on digital image processing is followed by chapters on the imaging modalities: radiography, CT, MRI, nuclear medicine and ultrasound. Each chapter covers the basic physics and interaction with tissue, the image reconstruction process, image quality aspects, modern equipment, clinical applications, and biological effects and safety issues. Subsequent chapters review image computing and visualization for diagnosis and treatment. Engineers, physicists and clinicians at all levels will find this new edition an invaluable aid in understanding the principles of imaging and their clinical applications.

Computerized recognition and quantification of texture information has been an active research domain for the past 50 years, with some of the pioneering work still widely used today. Recently, the increasing ubiquity of imaging data has driven the need for powerful image analysis approaches to convert this data into knowledge. One of the most promising application domains is biomedical imaging, which is a key enabling technology for precision medicine (e.g., radiomics and digital histopathology) and biomedical discovery (e.g., microscopy). The colossal research efforts and progress made in the general domain of computer vision have led to extremely powerful data analysis systems. Biomedical imaging relies upon well-defined acquisition protocols to produce images. This is quite different from general photography. Consequently, the analysis of biomedical images requires a paradigm change to account for the quantitative nature of the imaging process. Texture analysis is a broadly applicable, powerful technology for quantitative analysis of biomedical images. This book provides a thorough background on texture analysis for graduate students, and biomedical engineers from both industry and academia who have basic image processing knowledge. Medical doctors and biologists with no background in image processing will also find available methods and software tools for analyzing textures in medical images. By bringing together experts in data science, medicine, and biology, we hope that this book will actively promote
the translation of incredibly powerful data analysis methods into several breakthroughs in biomedical discovery and noninvasive precision medicine. Define biomedical texture precisely and describe how it is different from general texture information considered in computer vision Define the general problem to translate 2D and 3D texture patterns from biomedical images to visually and biologically relevant measurements Describe with intuitive concepts how the most popular biomedical texture analysis approaches (e.g., gray-level matrices, fractals, wavelets, deep convolutional neural networks) work, what they have in common, and how they are different Identify the strengths, weaknesses, and current challenges of existing methods including both handcrafted and learned representations, as well as deep learning. The goal is to establish foundations for building the next generation of biomedical texture operators Showcase applications where biomedical texture analysis has succeeded and failed Provide details on existing, freely available texture analysis software. This will help experts in medicine or biology develop and test precise research hypothesis This book provides a state-of-the-art overview of the combined use of imaging modalities to obtain important functional and morphological information on intravascular disease and enhance disease detection. It discusses the integration of intravascular ultrasound (IVUS, intravascular optical coherence tomography (OCT), intravascular photoacoustic imaging (IVPA) and acoustic radiation force optical coherence elastography (ARF-OCE), and introduces the integration of multimodality imaging systems, such as IR and florescence. It includes the latest research advances and numerous imaging photos to offer readers insights into current intravascular applications. It is a valuable resource for students, scientists and physicians wanting to gain a deeper understanding of multimodality imaging tools.

Offers an Extensive Discussion on High Frequency Ultrasound Based on a course taught and developed by a foremost expert in diagnostic ultrasound technology, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, Second Edition covers cutting-edge developments, along with the fundamental physics, instrumentation, system architecture, clinical ap

All healthcare professionals practising ultrasound in a clinical setting should receive accredited training in the principles and practice of ultrasound scanning. This second edition of Diagnostic Ultrasound: Physics and Equipment provides a comprehensive introduction to the physics, technology and safety of ultrasound equipment, with high quality ultrasound images and diagrams throughout. It covers all aspects of the field at a level intended to meet the requirements of UK sonography courses. New to this edition: • Updated descriptions of ultrasound technology, quality assurance and safety. • Additional chapters dedicated to 3D ultrasound, contrast agents and elastography. • New glossary containing definitions of over 500 terms. The editors and contributing authors are all authorities in their areas, with contributions to the scientific and professional development of ultrasound at national and international level.
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future. Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound. Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models.

Bioelectromagnetic and Subtle Energy Medicine focuses on a wide variety of evidence-based bioelectromagnetic and subtle energy therapies for disorders ranging from cancer, cardiomyopathy, and Parkinson's disease to depression, anxiety, and pain. Since publication of the first edition more than a decade ago, there have been so many advances in these and other diseases, that a thorough revision is required for this resource to remain the gold standard in a burgeoning field. This second edition updates previous topics and features many new chapters describing novel approaches that promise to replace drugs or surgery because they are more effective and much safer, such as rTMS for depression, MRI-Guided Focused Ultrasound for bone and uterine tumors, and TheraBionic LEET for liver cancer. Others discuss biological water (H3O2) that acts like a battery, health benefits of Earthing, malignant and other brain tumors from cell and cordless phones, visualizing and measuring energy fields in humans and nature, making sense of
homeopathy and "memory of water," basic science support for acupuncture, electrosensitivity, ion cyclotron resonance, the role of the pineal gland, the health effects of solar storms and terrestrial influences, and why Bioelectric Resonance Therapy bridges Chinese and Western medicine. This is only a sampling of the 50 chapters contributed by authorities from the United States, Europe, Scandinavia, Russia, China, Japan, and Iran.

Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians.

Foundations of Biomedical Ultrasound

Rheology is fundamentally important in food manufacturing in two major senses. Understanding the way in which a substance moves and behaves is essential in order to be able to transport and mix it during processing. Secondly, the rheology of a product dictates much of the consumer experience, e.g. in relation to texture and mouthfeel. This book doesn’t overwhelm the reader with complex mathematical equations but takes a simple and practically-focused approach, interpreting the implications of rheological data for use in different food systems. Through this approach industry-based food developers / rheologists, students, and academics are given clear, concise interpretation of rheological data which directly relates to actual perceived functionality in the food. The functionality may relate to texture, structure and mouthfeel, and may result as a function of temperature, pH, flocculation, concentration effects, and mixing. The interpretative view is based on the principle that the food rheologist will produce a graph, for example of viscosity or gelation profiling, and then have to extract a practical meaning from it. For example, if viscosity falls with time as a function of pH, this knowledge can be used to tell the customer that the viscosity can be followed with just a pH meter and a stopwatch. Rheological measurements have shown that once the pH has dropped 1 unit after 10 minutes, the viscosity has been halved. This is the type of practical and valuable information for customers of the industrial food rheologist which the book will enable readers to access. Key features: A uniquely practical approach to the often difficult science of food rheology Includes chapters introducing the basics of food rheology before moving on to how data can be usefully and easily interpreted by the food scientist Can be used as a teaching aid on academic or industry-based courses

ITiB'2018 is the 6th Conference on Information Technology in Biomedicine, hosted every two years by the Department of Informatics & Medical Devices, Faculty of Biomedical Engineering, Silesian University of Technology. The Conference is organized under the auspices of the Committee on Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. The meeting has become an established event that helps to address the demand for fast and reliable technologies capable of processing data and delivering results in a user-friendly,
timely and mobile manner. Many of these areas are recognized as research and development frontiers in employing new technology in the clinical setting. Technological assistance can be found in prevention, diagnosis, treatment, and rehabilitation alike. Homecare support for any type of disability may improve standard of living and make people’s lives safer and more comfortable. The book includes the following sections: Ø Image Processing Ø Multimodal Imaging and Computer-aided Surgery Ø Computer-aided Diagnosis Ø Signal Processing and Medical Devices Ø Bioinformatics Ø Modelling & Simulation Ø Analytics in Action on the SAS Platform Ø Assistive Technologies and Affective Computing (ATAC)

Since the publication of the best-selling, highly acclaimed first edition, the technology and clinical applications of medical imaging have changed significantly. Gathering these developments into one volume, Webb’s Physics of Medical Imaging, Second Edition presents a thorough update of the basic physics, modern technology and many examples of clinical application across all the modalities of medical imaging. New to the Second Edition Extensive updates to all original chapters Coverage of state-of-the-art detector technology and computer processing used in medical imaging 11 new contributors in addition to the original team of authors Two new chapters on medical image processing and multimodality imaging More than 50 percent new examples and over 80 percent new figures Glossary of abbreviations, color insert and contents lists at the beginning of each chapter Keeping the material accessible to graduate students, this well-illustrated book reviews the basic physics underpinning imaging in medicine. It covers the major techniques of x-radiology, computerised tomography, nuclear medicine, ultrasound and magnetic resonance imaging, in addition to infrared, electrical impedance and optical imaging. The text also describes the mathematics of medical imaging, image processing, image perception, computational requirements and multimodality imaging. Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.

This book provides a comprehensive survey of the pharmacokinetic models used for the quantitative interpretation of contrast-enhanced imaging. It discusses all the available imaging technologies and the problems related to the calibration of the imaging system and accuracy of the estimated physiological parameters. Enhancing imaging modalities using contrast agents has opened up new opportunities for going beyond morphological information and enabling minimally invasive assessment of tissue and organ functionality down to the molecular level. In combination with mathematical modeling of the contrast agent kinetics, contrast-enhanced imaging has the potential to provide clinically valuable additional information by estimating quantitative physiological parameters. The book presents the broad spectrum of diagnostic possibilities provided by quantitative contrast-enhanced imaging, with a particular focus on cardiology and oncology, as well as novel developments in the area of quantitative molecular imaging along with their potential clinical applications. Given the variety of available...
techniques, the choice of the appropriate imaging modality and the most suitable pharmacokinetic model is often challenging. As such, the book provides a valuable technical guide for researchers, clinical scientists, and experts in the field who wish to better understand and properly apply tracer-kinetic modeling for quantitative contrast-enhanced imaging.

Up-to-Date Details on Using Ultrasound Imaging to Help Diagnose Various Diseases

Due to improvements in image quality and the reduced cost of advanced features, ultrasound imaging is playing a greater role in the diagnosis and image-guided intervention of a wide range of diseases. Ultrasound Imaging and Therapy highlights the latest advances in using ultrasound imaging.

The current generation of imaging nanoparticles is diverse and dependent on its myriad of applications. This book provides an overview of how these imaging particles can be designed to fulfill specific requirements for applications across different imaging modalities. It presents, for the first time, a comprehensive interdisciplinary overview of the impact nanoparticles have on biomedical imaging and is a common central resource for researchers and teachers.

Photoacoustic imaging (PAI) is an emerging non-invasive imaging modality that integrates the advantages of deep ultrasound penetration and high optical contrast. It provides better resolution than pure ultrasonic imaging and deeper penetration than pure optical imaging. Hence, it is opening new frontiers in diagnostic imaging. Photoacoustic Imaging - Principles, Advances and Applications, provides interested readers with the principle knowledge, advanced methodologies, and new applications associated with PAI technology. Written by expert researchers, chapters cover such topics as the generation and detection of photoacoustic signals, sound source localization, image reconstruction and formation, and application of PAI in gastroenterology and ophthalmology.

This book presents up-to-date information on promising indications for ultrasound in contemporary periodontics and implant therapy with the aim of assisting researchers and dental practitioners to use this novel imaging modality to advance research and patient care. Readers will find clear guidance on the application of ultrasound for evaluation of periodontal and peri-implant tissues. The mechanism of ultrasound imaging is explained in detail and compared to other imaging modalities. Furthermore, the role of ultrasound in the planning and execution of implant surgery and the assessment of implant stability is discussed. The book closes by considering the potential dental applications of functional ultrasound and volumetric ultrasound. This book will potentially be of high values for dental surgeons, periodontists, general dentists, orthodontists, dental hygienists, dental assistants, dental researchers and other practitioners, etc.

This popular text provides a comprehensive, yet accessible, introduction to the physics and technology of medical ultrasound, with high quality ultrasound images and diagrams throughout. Covering all aspects of the field at a level that meets the requirements of accredited sonography courses, it is ideal for both trainee and qualified healthcare professionals practising ultrasound in a clinical setting. Building on the content of previous editions, this third edition provides the latest guidance relating to ultrasound technology, quality assurance and safety and discusses the latest techniques.

The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible “green alternative for more energy efficient processes. A challenge in the application of high-intensity ultrasound to industrial processing is the design and development of specific power ultrasonic systems for large scale operation. In the area of ultrasonic processing in fluid and multiphase media the development of a new family of power generators with extensive radiating surfaces has significantly contributed to the implementation at industrial scale of several applications in sectors such as the food industry, environment, and manufacturing. Part one covers fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. It also discusses the materials and designs of power
ultrasonic transducers and devices. Part two looks at applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. Discusses the materials and designs of power ultrasonic transducers and devices. Considers state-of-the-art power sonic applications across a wide range of industries.

An integrated, comprehensive survey of biomedical imaging modalities. An important component of the recent expansion in bioengineering is the area of biomedical imaging. This book provides in-depth coverage of the field of biomedical imaging, with particular attention to an engineering viewpoint. Suitable as both a professional reference and as a text for a one-semester course for biomedical engineers or medical technology students, Introduction to Biomedical Imaging covers the fundamentals and applications of four primary medical imaging techniques: magnetic resonance imaging, ultrasound, nuclear medicine, and X-ray/computed tomography. Taking an accessible approach that includes any necessary mathematics and transform methods, this book provides rigorous discussions of: The physical principles, instrumental design, data acquisition strategies, image reconstruction techniques, and clinical applications of each modality. Recent developments such as multi-slice spiral computed tomography, harmonic and sub-harmonic ultrasonic imaging, multi-slice PET scanning, and functional magnetic resonance imaging. General image characteristics such as spatial resolution and signal-to-noise, common to all of the imaging modalities.

Neuro-robotics is one of the most multidisciplinary fields of the last decades, fusing information and knowledge from neuroscience, engineering and computer science. This book focuses on the results from the strategic alliance between Neuroscience and Robotics that help the scientific community to better understand the brain as well as design robotic devices and algorithms for interfacing humans and robots. The first part of the book introduces the idea of neuro-robotics, by presenting state-of-the-art bio-inspired devices. The second part of the book focuses on human-machine interfaces for performance augmentation, which can seen as augmentation of abilities of healthy subjects or assistance in case of the mobility impaired. The third part of the book focuses on the inverse problem, i.e. how we can use robotic devices that physically interact with the human body, in order (a) to understand human motor control and (b) to provide therapy to neurologically impaired people or people with disabilities.

This updated guide to the current state-of-the-art of this complex and multidisciplinary area fills an urgent need for a unified source of information on piezoelectric devices and their astounding variety of existing and emerging applications. New understandings underlying the principles of Piezoelectric Transducers, new technological advances in its applications, and new areas of utility for these transducers made a second edition of this book inevitable.

This volume presents the proceedings of the Brazilian Congress on Biomedical Engineering (CBEB 2018). The conference was organised by the Brazilian Society on Biomedical Engineering (SBEB) and held in Armação de Buzios, Rio de Janeiro, Brazil from 21-25 October, 2018. Topics of the proceedings include these 11 tracks: • Bioengineering • Biomaterials, Tissue Engineering and Artificial Organs • Biomechanics and Rehabilitation • Biomedical Devices and Instrumentation • Biomedical Robotics, Assistive Technologies and Health Informatics • Clinical Engineering and Health Technology Assessment • Metrology, Standardization, Testing and Quality in Health • Biomedical Signal and Image Processing • Neural Engineering • Special Topics • Systems and Technologies for Therapy and Diagnosis

Wave fundamentals. Radiation. Generation and detection. Velocity, absorption and attenuation in biological materials. Scattering by biological

A practical learning tool for building a solid understanding of biomedical ultrasound. Basics of Biomedical Ultrasound for Engineers is a structured textbook that leads the novice through the field in a clear, step-by-step manner. Based on twenty years of teaching experience, it begins with the most basic definitions of waves, proceeds to ultrasound in fluids and solids, explains the principles of wave attenuation and reflection, then introduces to the reader the principles of focusing devices, ultrasonic transducers, and acoustic fields, and then delves into integrative applications of ultrasound in conventional and advanced medical imaging techniques (including Doppler imaging) and therapeutic ultrasound. Demonstrative medical applications are interleaved within the text and exemplary questions with solutions are provided on every chapter. Readers will come away with the basic toolkit of knowledge they need to successfully use ultrasound in biomedicine and conduct research. Encompasses a wide range of topics within biomedical ultrasound, from attenuation and reflection of waves to the intricacies of focusing devices, transducers, acoustic fields, modern medical imaging techniques, and therapeutics. Explains the most common applications of biomedical ultrasound from an engineering point of view. Provides need-to-know information in the form of physical and mathematical principles directed at concrete applications. Fills in holes in knowledge caused by ever-increasing new applications of ultrasonic imaging and therapy. Basics of Biomedical Ultrasound for Engineers is designed for undergraduate and graduate engineering students; academic/research engineers unfamiliar with ultrasound; and physicians and researchers in biomedical disciplines who need an introduction to the field. This book is meant to be “my first book on biomedical ultrasound” for anyone who is interested in the field.

Foundations of Biomedical Ultrasound provides a thorough and detailed treatment of the underlying physics and engineering of medical ultrasound practices. It covers the fundamental engineering behind ultrasound equipment, properties of acoustic wave motion, the behavior of waves in various media, non-linear waves and the creation of images. The most comprehensive book on the subject, Foundations of Biomedical Ultrasound is an indispensable reference for any medical professional working with ultrasound imaging, and a comprehensive introduction to the subject for students. The author has been researching and teaching biomedical ultrasonics at the University of Toronto for the past 25 years.

The Encyclopedia of Medical Robotics combines contributions in four distinct areas of Medical robotics, namely: Minimally Invasive Surgical Robotics, Micro and Nano Robotics in Medicine, Image-guided Surgical Procedures and Interventions, and Rehabilitation Robotics. The volume on Minimally Invasive Surgical Robotics focuses on robotic technologies geared towards challenges and opportunities in minimally invasive surgery and the research, design, implementation and clinical use of minimally invasive robotic systems. The volume on Micro and Nano robotics in Medicine is dedicated to research activities in an area of emerging interdisciplinary technology that is raising new scientific challenges and promising revolutionary advancement in applications such as medicine and biology. The size and range of these systems are at or below the micrometer scale and comprise assemblies of micro and nanoscale components. The volume on Image-guided Surgical Procedures and Interventions focuses primarily on the use of image guidance during surgical procedures and the challenges posed by various imaging environments and how they related to the design and development of robotic systems as well as their clinical applications. This volume also has significant contributions from the clinical viewpoint on some of the challenges in the domain of image-guided interventions. Finally, the volume on Rehabilitation Robotics is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to re-learn, improve, or restore functional movements in humans. Volume 1,
Minimally Invasive Surgical Robotics, focuses on an area of robotic applications that was established in the late 1990s, after the first robotics-assisted minimally invasive surgical procedure. This area has since received significant attention from industry and researchers. The teleoperated and ergonomic features of these robotic systems for minimally invasive surgery (MIS) have been able to reduce or eliminate most of the drawbacks of conventional (laparoscopic) MIS. Robotics-assisted MIS procedures have been conducted on over 3 million patients to date — primarily in the areas of urology, gynecology and general surgery using the FDA approved da Vinci® surgical system. The significant commercial and clinical success of the da Vinci® system has resulted in substantial research activity in recent years to reduce invasiveness, increase dexterity, provide additional features such as image guidance and haptic feedback, reduce size and cost, increase portability, and address specific clinical procedures. The area of robotic MIS is therefore in a state of rapid growth fueled by new developments in technologies such as continuum robotics, smart materials, sensing and actuation, and haptics and teleoperation. An important need arising from the incorporation of robotic technology for surgery is that of training in the appropriate use of the technology, and in the assessment of acquired skills. This volume covers the topics mentioned above in four sections. The first section gives an overview of the evolution and current state the da Vinci® system and clinical perspectives from three groups who use it on a regular basis. The second focuses on the research, and describes a number of new developments in surgical robotics that are likely to be the basis for the next generation of robotic MIS systems. The third deals with two important aspects of surgical robotic systems — teleoperation and haptics (the sense of touch). Technology for implementing the latter in a clinical setting is still very much at the research stage. The fourth section focuses on surgical training and skills assessment necessitated by the novelty and complexity of the technologies involved and the need to provide reliable and efficient training and objective assessment in the use of robotic MIS systems. In Volume 2, Micro and Nano Robotics in Medicine, a brief historical overview of the field of medical nanorobotics as well as the state-of-the-art in the field is presented in the introductory chapter. It covers the various types of nanorobotic systems, their applications and future directions in this field. The volume is divided into three themes related to medical applications. The first theme describes the main challenges of microrobotic design for propulsion in vascular media. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this section, a collection of four papers review the potential medical applications of motile nanorobots, catalytic-based propelling agents, biologically-inspired microrobots and nanoscale bacteria-enabled autonomous drug delivery systems. The second theme relates to the use of micro and nanorobots inside the body for drug-delivery and surgical applications. A collection of six chapters is presented in this segment. The first chapter reviews the different robot structures for three different types of surgery, namely laparoscopy, catheterization, and ophthalmic surgery. It highlights the progress of surgical microrobotics toward intracorporeally navigated mechanisms for ultra-minimally invasive interventions. Then, the design of different magnetic actuation platforms used in micro and nanorobotics are described. An overview of magnetic actuation-based control methods for microrobots, with eventually biomedical applications, is also covered in this segment. The third theme discusses the various nanomanipulation strategies that are currently used in biomedicine for cell characterization, injection, fusion and engineering. In-vitro (3D) cell culture has received increasing attention since it has been discovered to provide a better simulation environment of in-vivo cell growth. Nowadays, the rapid progress of robotic technology paves a new path for the highly controllable and flexible 3D cell assembly. One chapter in this segment discusses the applications of micro-nano robotic techniques for 3D cell culture using engineering approaches. Because cell fusion is important in numerous biological events and applications, such as tissue regeneration and...
cell reprogramming, a chapter on robotic-tweezers cell manipulation system to achieve precise laser-induced cell fusion using optical trapping has been included in this volume. Finally, the segment ends with a chapter on the use of novel MEMS-based characterization of micro-scale tissues instead of mechanical characterization for cell lines studies. Volume 3, Image-guided Surgical Procedures and Interventions, focuses on several aspects ranging from understanding the challenges and opportunities in this domain, to imaging technologies, to image-guided robotic systems for clinical applications. The volume includes several contributions in the area of imaging in the areas of X-Ray fluoroscopy, CT, PET, MR Imaging, Ultrasound imaging, and optical coherence tomography. Ultrasound-based diagnostics and therapeutics as well as ultrasound-guided planning and navigation are also included in this volume in addition to multi-modal imaging techniques and its applications to surgery and various interventions. The application of multi-modal imaging and fusion in the area of prostate biopsy is also covered. Imaging modality compatible robotic systems, sensors and actuator technologies for use in the MRI environment are also included in this work., as is the development of the framework incorporating image-guided modeling for surgery and intervention. Finally, there are several chapters in the clinical applications domain covering cochlear implant surgery, neurosurgery, breast biopsy, prostate cancer treatment, endovascular interventions, neurovascular interventions, robotic capsule endoscopy, and MRI-guided neurosurgical procedures and interventions. Volume 4, Rehabilitation Robotics, is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to relearn, improve, or restore functional movements in humans. This volume attempts to cover a number of topics relevant to the field. The first section addresses an important activity in our daily lives: walking, where the neuromuscular system orchestrates the gait, posture, and balance. Conditions such as stroke, vestibular deficits, or old age impair this important activity. Three chapters on robotic training, gait rehabilitation, and cooperative orthoses describe the current works in the field to address this issue. The second section covers the significant advances in and novel designs of soft actuators and wearable systems that have emerged in the area of prosthetic lower limbs and ankles in recent years, which offer potential for both rehabilitation and human augmentation. These are described in two chapters. The next section addresses an important emphasis in the field of medicine today that strives to bring rehabilitation out from the clinic into the home environment, so that these medical aids are more readily available to users. The current state-of-the-art in this field is described in a chapter. The last section focuses on rehab devices for the pediatric population. Their impairments are life-long and rehabilitation robotics can have an even bigger impact during their lifespan. In recent years, a number of new developments have been made to promote mobility, socialization, and rehabilitation among the very young: the infants and toddlers. These aspects are summarized in two chapters of this volume.

This title provides a global survey of the rapidly growing field of image-guided therapy. You find detailed coverage of a wide range of key topics, from MRI-guided surgery, robotic cardiac surgery, and brachytherapy and hyperthermia for cancer treatment. to modern procedures in neurosurgery, laser cosmetic therapy, and ultrasound-guided high intensity focused ultrasound therapy for non-invasive tumor treatment. You learn the fundamentals of imaging and therapeutic modalities and their capabilities and constraints in implementation of image-guided therapy systems.

The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and
scholars in their respective fields, hailing from around the world.
Der siebente Band Medizinische Bildgebung der Lehrbuchreihe Biomedizinische Technik (BMT) stellt die Vielfalt bildgebender Modalitäten zum Einsatz in der Medizin vor: Projektionsröntgen, Computertomographie (CT), Tomosynthese, Szintigraphie und Einzelphotonen-Emissions-Computertomographie (SPECT), Positronen-Emissions-Tomographie (PET), Ultraschallbildgebung (US), Magnetresonanztomographie (MRT), Abbildung bioelektrischer Quellen, Magnetic Particle Imaging (MPI), Impedanztomographie, Endoskopie, interventionelle Mikroskopie, optische Kohärenztomographie (OCT), diffuse optische Bildgebung, Infrarotbildgebung, Mikrowellen und THz Bildgebung, molekulare Bildgebung und interventionelle Bildgebung. Zu jedem dieser Verfahren erfolgt die umfassende Erläuterung des physikalischen Grundprinzips, der gerätetechnischen Umsetzung, der Qualitätsparameter und der medizinischen Applikationen. Darüber hinaus werden auch spezielle Verfahren für Forschungsanwendungen besprochen.
Comprehensive Biomedical Physics is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color

Copyright: ec58ce12e6ec2a11230261b7fb579d66