The Rogers Ramanujan Continued Fraction And A New

This volume presents the proceedings of the Joint Summer Research Conference on q-series, combinatorics, and computer algebra held at Mount Holyoke College (South Hadley, MA). All of the papers were contributed by participants and offer original research on topics of current interest. Articles in the book reflect the diversity of areas that overlap with q-series, as well as the usefulness of q-series across the mathematical sciences. The conference was held in honor of Richard Askey on the occasion of his 65th birthday and the proceedings contain an article about Askey’s contributions to special functions.

This volume presents the contributions from the international conference held at the University of Missouri at Columbia, marking Professor Lange’s 70th birthday and his retirement from the university. The principal purpose of the conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between a large number of fields - from pure mathematics to mathematical physics and approximation theory. Evident in this work is the widespread influence of continued fractions in a broad range of areas of mathematics and physics, including number theory, elliptic functions, Pade approximations, orthogonal polynomials, moment problems, frequency analysis, and regularity properties of evolution equations. Different areas of current research are represented. The lectures at the conference and the contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.

The First Edition of the book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians in history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life with the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. Also, among the articles are reviews of three important books on Ramanujan’s mathematics and life. In addition, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his path-breaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. This Second Edition is an expanded version of the first with six more articles by the author. Of note is the inclusion of a detailed review of the movie The Man Who Knew Infinity, a description of the fundamental work of the SASTRA Ramanujan Prize Winners, and an account of the Royal Society Conference to honour Ramanujan’s legacy on the centenary of his election as FRS.

In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as “Ramanujan’s Lost Notebook,” it contains considerable material on mock theta functions and undoubtedly dates from the last year of Ramanujan’s life. In this book, the notebook is presented with additional material and expert commentary. The influence of Ramanujan on number theory is without parallel in mathematics. His papers, problems and letters have spawned a remarkable number of later results by many different mathematicians. Here, his 37 published papers, most of his first two and last letters to Hardy, the famous 58 problems submitted to the Journal of the Indian Mathematical Society, and the commentary of the original editors (Hardy, Seshu Aiyar and Wilson) are reprinted again, after having been unavailable for some time. In this, the third printing of Ramanujan’s collected papers, Bruce Berndt provides an annotated guide to Ramanujan’s work and to the mathematics it inspired over the last three-quarters of a century. The historical development of
ideas is traced in the commentary and by citations to the copious references. The editor has done the mathematical world a tremendous service that few others would be qualified to do.

This volume contains the proceedings of an international conference to commemorate the 125th anniversary of Ramanujan's birth, held from November 5-7, 2012, at the University of Florida, Gainesville, Florida. Srinivasa Ramanujan was India's most famous mathematician. This volume contains research and survey papers describing recent and current developments in the areas of mathematics influenced by Ramanujan. The topics covered include modular forms, mock theta functions and harmonic Maass forms, continued fractions, partition inequalities, q-series, representations of affine Lie algebras and partition identities, highly composite numbers, analytic number theory and quadratic forms.

Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.

In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors' examination of Ramanujan's lost notebook focuses on the mock theta functions first introduced in Ramanujan's famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan's many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume: "Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some
Acces PDF The Rogers Ramanujan Continued Fraction And A New

previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited.~- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society

"The son of a prominent Japanese mathematician who came to the United States after World War II, Ken Ono was raised on a diet of high expectations and little praise. Rebelling against his pressure-cooker of a life, Ken determined to drop out of high school to follow his own path. To obtain his father’s approval, he invoked the biography of the famous Indian mathematical prodigy Srinivasa Ramanujan, whom his father revered, who had twice flunked out of college because of his single-minded devotion to mathematics. Ono describes his rocky path through college and graduate school, interweaving Ramanujan’s story with his own and telling how at key moments, he was inspired by Ramanujan and guided by mentors who encouraged him to pursue his interest in exploring Ramanujan’s mathematical legacy. Picking up where others left off, beginning with the great English mathematician G.H. Hardy, who brought Ramanujan to Cambridge in 1914, Ono has devoted his mathematical career to understanding how in his short life, Ramanujan was able to discover so many deep mathematical truths, which Ramanujan believed had been sent to him as visions from a Hindu goddess. And it was Ramanujan who was ultimately the source of reconciliation between Ono and his parents. Ono’s search for Ramanujan ranges over three continents and crosses paths with mathematicians whose lives span the globe and the entire twentieth century and beyond. Along the way, Ken made many fascinating discoveries. The most important and surprising one of all was his own humanity.

The Rogers--Ramanujan identities are a pair of infinite series—infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherent and clear way, this will be the first book entirely devoted to the Rogers—Ramanujan identities and will include related historical material that is unavailable elsewhere.

Continued Fractions consists of two volumes — Volume 1: Convergence Theory; and Volume 2: Representation of Functions (tentative title), which is expected in 2011. Volume 1 is dedicated to the convergence and computation of continued fractions, while Volume 2 will treat representations of meromorphic functions by continued fractions. Taken together, the two volumes will present the basic continued fractions theory without requiring too much previous knowledge; some basic knowledge of complex functions will suffice. Both new and advanced graduate students of continued fractions shall get a comprehensive understanding of how these infinite structures work in a number of applications, and why they work so well. A varied buffet of possible applications to whet the appetite is presented first, before the more basic but modernized theory is given. This new edition is the result of an increasing interest in computing special functions by means of continued fractions. The methods described in detail are, in many cases, very simple, yet reliable and efficient.
Various topics related to the work of Ramanujan are discussed in this thesis. In Chapter 2, we give a new proof of Ramanujan's famous partition identity modulo 5 (see (1.1)). This proof is an improvement of W. N. Bailey's proof given in 1952. We also establish a new proof of Ramanujan's partition identity modulo 7. One remarkable feature of Ramanujan's identities is that many of them appear in pairs. In Chapter 3, we explain this interesting phenomenon using Hecke's theory of correspondence between Fourier series and Dirichlet series. Chapters 4 and 5 are devoted to the evaluations of Ramanujan-Weber class invariants. We establish 18 of these invariants which have not heretofore been proven. Our proofs rely heavily on the knowledge of modular equations and class field theory. In Chapter 6, we study Ramanujan's cubic continued fraction G(q) (see (1.7)) and construct relations between various continued fractions. We also use the results of Chapter 4 to give explicit evaluations of G(q) at $q = \pm \exp(-\pi \sqrt{n})$. Undoubtedly, one of Ramanujan's favorite topics is the Rogers-Ramanujan continued fraction F(q) (see (1.6)). In Chapter 7, using modular equations of degrees 5 and 25, we establish theorems which enable us to evaluate F(q) at $q = \exp(-2\pi \sqrt{n})$ and $-\exp(-\pi \sqrt{n})$. In particular, we are able to complete a table initiated by Ramanujan on page 210 of his Lost Notebook. In his first notebook, Ramanujan recorded several values of the classical theta function $\varphi(q)$ (see (2.1.7)). In our final chapter, we give natural proofs of these values using modular equations of various degrees. We also discover a new identity which is related to the Borweins' cubic theta functions.

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.
equations, elliptic functions, fractional calculus, hypergeometric and q-hypergeometric series, nonlinear waves, number theory, symbolic and numerical evaluation of integrals, and theta functions. A few articles are expository, with extensive bibliographies, but all contain original research. This book is intended for pure and applied mathematicians who are interested in recent developments in the theory of special functions. It covers a wide range of active areas of research and demonstrates the vitality of the field. The Advanced Study Institute brought together researchers in the main areas of special functions and applications to present recent developments in the theory, review the accomplishments of past decades, and chart directions for future research. Some of the topics covered are orthogonal polynomials and special functions in one and several variables, asymptotic, continued fractions, applications to number theory, combinatorics and mathematical physics, integrable systems, harmonic analysis and quantum groups, Painlevé classification.

The letters that Ramanujan wrote to G. H. Hardy on January 16 and February 27, 1913, are two of the most famous letters in the history of mathematics. These and other letters introduced Ramanujan and his remarkable theorems to the world and stimulated much research, especially in the 1920s and 1930s. This book brings together many letters to, from, and about Ramanujan. The letters came from the National Archives in Delhi, the Archives in the State of Tamil Nadu, and a variety of other sources. Helping to orient the reader is the extensive commentary, both mathematical and cultural, by Berndt and Rankin; in particular, they discuss in detail the history, up to the present day, of each mathematical result in the letters. Containing many letters that have never been published before, this book will appeal to those interested in Ramanujan's mathematics as well as those wanting to learn more about the personal side of his life. Ramanujan: Letters and Commentary was selected for the CHOICE list of Outstanding Academic Books for 1996.

The current form of modern approximation theory is shaped by many new developments which are the subject of this series of conferences. The International Meetings on Approximation Theory attempt to keep track in particular of fundamental advances in the theory of function approximation, for example by (orthogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation, splines, radial basis functions and several others. This includes both approximation order and error estimates, as well as constructions of function systems for approximation of functions on Euclidean spaces and spheres. It is a piece of very good fortune that at all of the IDoMAT meetings, colleagues and friends from all over Europe, and indeed some countries outside Europe and as far away as China, New Zealand, South Africa and U.S.A. came and discussed mathematics at IDoMAT conference facility in Witten-Bommerholz. The conference was, as always, held in a friendly and congenial atmosphere. After each meeting, the delegates were invited to contribute to the proceeding's volume, the previous one being published in the same Birkhäuser series as this one. The editors were pleased about the quality of the contributions which could be solicited for the book. They are refereed and we should mention our gratitude to the referees and their work.

Among his thirty-three published papers, Ramanujan had only one continued fraction, the Rogers-Ramanujan continued fraction. However, his notebooks contain over 100 results on continued fractions. At the end of his second
notebook are 100 pages of unorganized material, and the third notebook comprises thirty-three pages of disorganized results. In these 133 pages of material are approximately sixty theorems on continued fractions, most of them new results. In this monograph, the authors discuss and prove each of these theorems. Aimed at those interested in Ramanujan and his work, this monograph will be of special interest to those who work in continued fractions, q-series, special functions, theta-functions, and combinatorics. The work is likely to be of interest to those in number theory as well. The only required background is some knowledge of continued fractions and a course in complex analysis.

Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of q-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics.

The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.

This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author's personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises. After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange's four-squares theorem and Gauss's two-squares theorem. Attention then turns to partitions and Ramanujan's partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers–Ramanujan identities and the Rogers–Ramanujan...
continued fraction, the famous “forty identities” of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a “mysterious” partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper “which even Erdös couldn’t do.” The book concludes with a look at Ramanujan’s remarkable tau function.

In his notebooks, Ramanujan recorded 40 beautiful modular relations for the Rogers-Ramanujan functions. Of these 40 identities, precisely one involves powers of the Rogers-Ramanujan functions. Ramanujan added the enigmatic note that "Each of these formulae is the simplest of a large class." This suggests that there are further modular identities involving powers of the Rogers-Ramanujan functions. Although numerous authors have studied identities for the Rogers-Ramanujan functions and various analogues, no systematic study of identities involving powers of the Rogers-Ramanujan functions has been undertaken. In this thesis, we continue the study of modular identities for the Rogers-Ramanujan functions, with particular emphasis on relations involving powers of the Rogers-Ramanujan functions. Our methods are classical, using tools and techniques that Ramanujan could have employed. These tools include, for example, manipulation of infinite series and the theory of modular equations. It is hoped that these methods will give new insights into these equations, and perhaps lead to understanding or discovering further families of identities of mathematical interest. Identities involving squares, cubes, fourth, and fifth powers of the Rogers-Ramanujan functions are enunciated and proved; many of these relations are new. Rich applications are made to the study of modular relations for the Rogers-Ramanujan continued fraction. To demonstrate the generality of our methods, analogous results are obtained in various cases for the Gollnitz-Gordon functions and the Ramanujan-Gollnitz-Gordon continued fraction. Further identities for the Rogers-Ramanujan functions, of the types found in Ramanujan's list of 40 relations for the Rogers-Ramanujan functions, are also studied. Analogous identities are obtained for the Gollnitz-Gordon functions, as well as for dodecic and sextodecic analogues of the Rogers-Ramanujan functions.

these infinite structures work in a number of applications, and why they work so well. A varied buffet of possible applications to whet the appetite is presented first, before the more basic but modernized theory is given. This new edition is the result of an increasing interest in computing special functions by means of continued fractions. The methods described in detail are, in many cases, very simple, yet reliable and efficient. This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

Sir Arthur Conan Doyle's famous fictional detective Sherlock Holmes and his sidekick Dr. Watson go camping and pitch their tent under the stars. During the night, Holmes wakes his companion and says, "Watson, look up at the stars and tell me what you deduce." Watson says, "I see millions of stars, and it is quite likely that a few of them are planets just like Earth. Therefore there may also be life on these planets." Holmes replies, "Watson, you idiot. Somebody stole our tent." When seeking proofs of Ramanujan's identities for the Rogers-Ramanujan functions, Watson, i.e., G. N. Watson, was not an "idiot." He, L. J. Rogers, and D. M. Bressoud found proofs for several of the identities. A. J. F. Biagioli devised proofs for most (but not all) of the remaining identities. Although some of the proofs of Watson, Rogers, and Bressoud are likely in the spirit of those found by Ramanujan, those of Biagioli are not. In particular, Biagioli used the theory of modular forms. Haunted by the fact that little progress has been made into Ramanujan's insights on these identities in the past 85 years, the present authors sought "more natural" proofs. Thus, instead of a missing tent, we have had missing proofs, i.e., Ramanujan's missing proofs of his forty identities for the Rogers-Ramanujan functions. In this paper, for 35 of the 40 identities, the authors offer proofs that are in the spirit of Ramanujan. Some of the proofs presented here are due to Watson, Rogers, and Bressoud, but most are new. Moreover, for several identities, the authors present two or three proofs. For the five identities that they are unable to prove, they provide non-rigorous verifications based on an asymptotic analysis of the associated Rogers-Ramanujan functions. This method, which is related to the 5-dissection of the generating function for cranks found in Ramanujan's lost notebook, is what Ramanujan might have used to discover several of the more difficult identities. Some of the new methods in this paper can be employed to establish new identities for the Rogers-Ramanujan functions.

The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers–Ramanujan continued fraction — a result that convinced G H Hardy that Ramanujan was a “mathematician of the highest class”, and (2) what G. H. Hardy called Ramanujan’s “Most Beautiful Identity”. This book covers a range of related results, such as several proofs of the famous Rogers–Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techniques in q-series. Contents: Jacob's Triple Product Identity, The Rogers-Ramanujan Identities, The Rogers-Ramanujan continued Fraction, From the "Most Beautiful Identity" to Ramanujan's Congruences. Readership: Graduate students and researchers in number theory. Keywords: Rogersâ€”Ramanujan Continued Fraction, Rogersâ€”Ramanujan Identities, Ramanujan's â€œMost Beautiful Identityâ€”, Ramanujan Congruences. Reviews: “A great strength of this book is that almost
every major result is proven in several different ways, illustrating the breadth of approaches to q-series ... This book is well written with results that are well motivated and clearly explained. It is an excellent and satisfying introduction to q-series.” Mathematical Reviews

Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.

During the years 1903-1914, Ramanujan recorded many of his mathematical discoveries in notebooks without providing proofs. Although many of his results were already in the literature, more were not. Almost a decade after Ramanujan's death in 1920, G.N. Watson and B.M. Wilson began to edit his notebooks but never completed the task. A photostat edition, with no editing, was published by the Tata Institute of Fundamental Research in Bombay in 1957. This book is the second of four volumes devoted to the editing of Ramanujan's Notebooks. Part I, published in 1985, contains an account of Chapters 1-9 in the second notebook as well as a description of Ramanujan's quarterly reports. In this volume, we examine Chapters 10-15 in Ramanujan's second notebook. If a result is known, we provide references in the literature where proofs may be found; if a result is not known, we attempt to prove it. Not only are the results fascinating, but, for the most part, Ramanujan's methods remain a mystery. Much work still needs to be done. We hope readers will strive to discover Ramanujan's thoughts and further develop his beautiful ideas.

Copyright: 6f40774472c2c80ee478fe858d53f1fe